Exercise 30

If $f(t)=\sec t$, find $f^{\prime \prime}(\pi / 4)$.

Solution

Calculate the first derivative.

$$
\begin{aligned}
f^{\prime}(t) & =\frac{d}{d t}(\sec t) \\
& =\sec t \tan t
\end{aligned}
$$

Calculate the second derivative using the product rule.

$$
\begin{aligned}
f^{\prime \prime}(t) & =\frac{d}{d t}\left[f^{\prime}(t)\right] \\
& =\frac{d}{d t}(\sec t \tan t) \\
& =\left[\frac{d}{d t}(\sec t)\right] \tan t+\sec t\left[\frac{d}{d t}(\tan t)\right] \\
& =(\sec t \tan t) \tan t+\sec t\left(\sec ^{2} t\right) \\
& =\sec t \tan ^{2} t+\sec ^{3} t
\end{aligned}
$$

Evaluate the second derivative at $t=\pi / 4$.

$$
f^{\prime \prime}(\pi / 4)=\sec (\pi / 4) \tan ^{2}(\pi / 4)+\sec ^{3}(\pi / 4)=(\sqrt{2})(1)^{2}+(\sqrt{2})^{3}=3 \sqrt{2}
$$

